Evolving ensembles of linear classifiers by means of clonal selection algorithm∗

نویسنده

  • Tadeusz Burczyński
چکیده

Artificial immune systems (AIS) have become popular among researchers and have been applied to a variety of tasks. Developing supervised learning algorithms based on metaphors from the immune system is still an area in which there is much to explore. In this paper a novel supervised immune algorithm based on clonal selection framework is proposed. It evolves a population of linear classifiers used to construct a set of classification rules. Aggregating strategies, such as bagging and boosting, are shown to work well with the proposed algorithm as the base classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets

Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...

متن کامل

Land Cover Mapping Using Ensemble Feature Selection Methods

Ensemble classification is an emerging approach to land cover mapping whereby the final classification output is a result of a ‘consensus’ of classifiers. Intuitively, an ensemble system should consist of base classifiers which are diverse i.e. classifiers whose decision boundaries err differently. In this paper ensemble feature selection is used to impose diversity in ensembles. The features o...

متن کامل

Modeling and design of a diagnostic and screening algorithm based on hybrid feature selection-enabled linear support vector machine classification

Background: In the current study, a hybrid feature selection approach involving filter and wrapper methods is applied to some bioscience databases with various records, attributes and classes; hence, this strategy enjoys the advantages of both methods such as fast execution, generality, and accuracy. The purpose is diagnosing of the disease status and estimating of the patient survival. Method...

متن کامل

Ensembles of nearest neighbour classifiers and serial analysis of gene expression

In this paper, we represent experimental results obtained with ensembles of nearest neighbour classifiers on the binary classification problem of cancer classification using serial analysis of gene expression (SAGE) data. Nearest neighbours are selected as classifiers since they were rarely employed in building ensembles because their predictions are stable to small perturbations of data, which...

متن کامل

Features in Concert: Discriminative Feature Selection meets Unsupervised Clustering

Feature selection is an essential problem in computer vision, important for category learning and recognition. Along with the rapid development of a wide variety of visual features and classifiers, there is a growing need for efficient feature selection and combination methods, to construct powerful classifiers for more complex and higherlevel recognition tasks. We propose an algorithm that eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010